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SUMMARY

In this paper we develop a finite element model, named HELIKE, for the numerical simulation of 3D,
non-hydrostatic, turbulent flows with a free surface like those arising from the study of the motion of water
in coastal regions. The kinematic free-surface equation is used to compute the surface elevation, without
resorting to vertical averages. The model presented here incorporates surface wind stress, bottom friction
and Coriolis acceleration, and it is applicable to irregular bottom topographies. A pressure stabilization
technique is employed to stabilize the finite element solution. Numerical results obtained both in test
problems and in a real-life application confirm the accuracy, robustness and applicability of the proposed
method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical modelling of the motion of water in coastal regions is a difficult and challenging
problem due to the complexity of the different phenomena that affect the flow, the different time
and space scales at which they occur and the irregularity of the geometries in which it takes
place (see [1]). Moreover, it is a problem of great practical interest in different disciplines such as
harbor engineering, the protection of beaches, water quality assessments and environmental flow
problems.
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Early numerical models for ocean dynamics were based on simplifying assumptions that limited
their range of validity. Thus, a mixed finite element formulation was applied to solve the quasi-
geostrophic equations in a two-layered ocean enclosed by solid boundaries in [2]. However, the
increase in computer power over the last years has enabled more general, accurate and sophisticated
models to be developed. In addition, the hydrostatic pressure assumption was extensively used in
the past to obtain simplified models from the complete Navier–Stokes equations. The hydrostatic
shallow water equations are still commonly used to study the circulation in well-mixed shallow
estuaries, coastal seas and lakes (see [3–10]). On the other hand, the hydrostatic primitive equations
of the ocean have also been extensively used especially in modelling large scale ocean dynamics
(see [11–14]). However, the hydrostatic pressure approximation is not always valid for flows over
rapidly varying slopes, such as littoral areas, and for short waves where the ratio of the vertical
to the horizontal scales of motion is not sufficiently small; there are many important small-scale
phenomena in the ocean (taking place at scales smaller than 1 km) such as wind- and buoyancy-
driven turbulence in the surface mixed layers, large density gradients or convection in the open
sea, which are not in hydrostatic balance and are fundamentally non-hydrostatic. We will focus
on non-hydrostatic models in what follows.

The need to accurately predict the evolution of small surface gravity waves and to model
tidal flows makes it necessary to incorporate an equation for the evolution of the free-surface
elevation. Several other effects such as Coriolis acceleration, wind stress and bottom friction should
also be accounted for, and a 3D formulation is mandatory for a versatile model. Several models
incorporating all these phenomena have been developed so far.

As far as the numerical method employed to discretize the problem, most of the existing 3D
non-hydrostatic, free-surface models use the finite difference method with a careful choice of the
position of the velocity and pressure degrees of freedom on different cell locations [15–20]; other
models use the finite volume method [21]. Nowadays, however, the finite element approach has
become a useful tool in almost all areas of computational mechanics, and certainly in computational
fluid dynamics, due to some properties of the method such as conservation of mass and energy,
natural treatment of boundary conditions and flexibility of triangulation. To our knowledge, only
a few 3D non-hydrostatic, free-surface finite element models have been developed so far, such
as those of Causin et al. [22], Labeur and Pietrzak [23] and Walters [24, 25]. The FINEL3D
model of Labeur and Pietrzak [23] does not incorporate Coriolis accelerations, surface wind stress,
bottom friction nor an equation for the free surface. Both this model and the model of Causin
et al. [22] use only constant values for the turbulent viscosity coefficients. Moreover, these models,
as well as the models of Walters [24], are based on mixed finite element spatial discretizations
with different interpolations for the velocity and the pressure, so as to satisfy the discrete inf–sup
compatibility condition for the approximating spaces of the two variables: the MINI element in
[23] and the lowest order non-conforming Raviart–Thomas element in [22, 24]. However, stabilized
formulations like those of [26–30] have been shown to be more efficient than mixed interpolations
for the numerical solution of incompressible flow problems (see [31]).

In this paper we develop a 3D, non-hydrostatic finite element model, named HELIKE, for coastal
oceanic flows. This model incorporates Coriolis accelerations, surface wind stress, bottom friction
and different turbulence closure models, and it is applicable to irregular bottom topographies. A
stabilization technique based on a pressure gradient projection (PGP) (see [32–35]) is employed
to avoid pressure oscillations, allowing the use of equal interpolation for the velocity and the
pressure. We consider both a rigid-lid version of the model and a more complete version, which
incorporates an evolution equation for the free-surface height. The original kinematic free-surface
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3D FE METHOD FOR NON-HYDROSTATIC FREE-SURFACE FLOWS 613

equation, rather than a vertically averaged form of it, is considered in our model, which exploits
the possibility of using unstructured meshes both in the horizontal and in the vertical inherent
to the finite element method. Prismatic elements with a triangular base are used for the spatial
approximation, and an implicit (and therefore unconditionally stable) backward Euler method is
employed for the time advancement.

The outline of the paper is as follows: Section 2 introduces the mathematical problem to be
solved, which models the hydrodynamics of coastal regions. In Section 3 details are provided
concerning the numerical scheme used to approximate the mathematical model; the time approx-
imation is introduced first, followed by a description of the finite element method used for the
spatial discretization and the technique employed to stabilize the pressure solution, since only
equal-order approximations for the velocity and the pressure are considered and they can yield
unphysical solutions when combined with standard Galerkin methods. In Section 4 some numerical
results obtained with the proposed model on test cases and on a real-life application are given.
Finally, some conclusions are drawn.

2. HYDRODYNAMICAL MODEL

In order to study the dynamics of water in coastal regions, we consider a 3D domain � defined
by the equation:

�={(x, y, z)∈R3/(x, y)∈ S,−H(x, y)<z<0}
referred to Cartesian coordinates x , y (horizontal, with positive x eastbound and positive y north-
bound) and z (vertical), where S⊂R2 is the reference fluid surface (lying in the plane z=0) and
H: S̄→R is a positive function representing the bathymetry of the region of interest. The boundary
of � can be decomposed as ��=�s∪�b∪�l , where

�s = S×0 (the surface)

�b={(x, y, z)∈R3/(x, y)∈ S,−H(x, y)= z} (the bottom)

�l ={(x, y, z)∈R3/(x, y)∈�S,−H(x, y)�z�0} (the lateral boundary)

The motion of an incompressible, isopicnical fluid occupying � is governed by the 3D unsteady,
incompressible Navier–Stokes equations expressed in a rotating coordinate system:

�u
�t

+(u·∇)u+k×u+∇P− �
�x

(
�H

�u
�x

)
− �

�y

(
�H

�u
�y

)
− �

�z

(
�V

�u
�z

)
=−g in �×(0,T ) (1)

∇ ·u=0 in �×(0,T ) (2)

where u=(u,v,w) is the 3D velocity of the fluid (as usual, boldface characters denote vector
fields) and P(x, y, z, t) is the fluid kinematic pressure, that is, the pressure divided by the fluid
density �. The unknowns u and P are functions of the spatial coordinates (x, y, z)∈� and time
t ∈(0,T ), with T>0 a given final time. Moreover, ∇ =(�/�x,�/�y,�/�z) is the 3D gradient
operator; k=(0,b, f ), where f =2�sin(�) and b=2�cos(�) are the normal and the tangential
Coriolis parameters, respectively, � is the Earth’s angular velocity and � the latitude of the region
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of interest; �H and �V are the horizontal and vertical turbulent eddy viscosities, respectively; finally,
g=(0,0,g), and g is the gravitational acceleration.

In non-hydrostatic models, Mahadevan et al. [36] advise to retain the vertical Coriolis accelera-
tion that arises from the tangential component of the Coriolis parameter b=2�cos(�), commonly
neglected in hydrostatic models. This component of the Coriolis acceleration is a dominant term
in the vertical component of the momentum equation (1), and is in close balance with the non-
hydrostatic pressure gradient in the vertical. Any deviation from this balance induces vertical
acceleration in the fluid.

On the other hand, we can use either a Smagorinsky model (see [37]) or a constant value for
the horizontal turbulent viscosity coefficient �H, and either a Munk–Anderson model (see [38]), a
Pacanowski–Philander model (see [39]) or a homogeneous distribution for the vertical turbulent
viscosity coefficient �V. In addition, centrifugal accelerations that have been incorporated into the
gravity term, yielding an effective gravity acceleration that is aligned with the vertical axis.

As is often done in ocean flow models, the evolution of the sea surface is characterized by a
function �(x, y, t), where (x, y)∈ S and t ∈(0,T ), which represents the elevation of the surface with
respect to the reference plane z=0. Since in ocean flows the magnitude of the free-surface elevation
is much smaller than the average water depth, several ocean models solve the hydrodynamic
problem in the fix domain � (see, for instance, [12, 15, 21–23]), which is not updated to reflect the
variations of the free surface. This is computationally much more economical than other techniques
such as purely Lagrangian or ALE formulations (see, for instance, [40]) used in other areas of
Computational Fluid Dynamics, since the need for remeshing or moving the mesh in each time step
is avoided. The evolution of the free-surface elevation � is governed by the kinematic equation:

��

�t
+u

��

�x
+v

��

�y
=w in S×(0,T ) (3)

Contrary to most of the existing numerical models for free-surface ocean flow problems, we do
not integrate the continuity equation (2) vertically along each column of fluid and use condition
(3) to derive a vertically averaged free-surface equation. Instead, we solve Equation (3) as it is
without any further approximation. This way, the numerical solution will not be affected by errors
due to the presence of a slight numerical compressibility in the discrete solution. We believe the
resulting scheme will be robust.

Furthermore, it is usual in non-hydrostatic ocean flow models to use some pressure splitting (see
[12, 14–17, 19, 21–23]). We decompose the total pressure P in Equation (1) into its atmospheric,
hydrostatic and non-hydrostatic components:

P(x, y, z, t)= pa(x, y, t)+g(�−z)+ p(x, y, z, t) (4)

where pa is the atmospheric pressure (which we assume to be zero). Using (4) in (1) results in

�u
�t

+(u·∇)u+k×u+∇ p− �
�x

(
�H

�u
�x

)

− �
�y

(
�H

�u
�y

)
− �

�z

(
�V

�u
�z

)
=−g∇2� in �×(0,T ) (5)

∇ ·u=0 in �×(0,T ) (6)
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where ∇2=(�/�x,�/�y,0) is the 2D gradient operator extended to 3D. The pressure splitting (4)
allows to incorporate barotropic forcing effects into the hydrodynamical problem through the right-
hand-side term in (5). We use Equations (5) and (6) and the kinematic free-surface equation (3)
in our model.

Boundary conditions have to be supplied to the equation system (3)–(5)–(6). At the bottom of
the domain, which we assume impermeable, the kinematic boundary condition reads as

w+u
�H
�x

+v
�H
�y

=0 on �b (7)

so that we can deal with irregular topographies. Moreover, we use a linear dependence on the
current for the bottom friction due to rugosity:

�Hnx

(
�u
�x

,
�v

�x

)
+�Hny

(
�u
�y

,
�v

�y

)
+�Vnz

(
�u
�z

,
�v

�z

)
=(�xb,�

y
b) :=Cb(u,v) on �b (8)

Here, n=(nx ,ny,nz) is the unit outward normal vector to � and Cb is the linear bottom friction
coefficient.

Although the expression of the stress tensor involves the symmetric part of the gradient of
the velocity field, but we are using the gradient itself, tangent wind stress at the free surface is
modelled, as usual in ocean models, as

�V

(
�u
�z

,
�v

�z

)
=(�xs ,�

y
s ) := �a

�0
Cs(U

2
10+V 2

10)
1/2(U10,V10) on �s (9)

where �a is the air’s density, Cs the dimensionless wind drag coefficient and (U10,V10) the
horizontal wind velocity vector at a reference height of 10m above the surface. Zero normal stress
is also imposed on �s :

�V
�w

�z
=0 on �s (10)

Finally, different conditions may be applied on the lateral boundary �l , according to different
physical situations; let us write �l =�I∪�W∪�O (with empty intersections pairwise) corre-
sponding to the inflow, solid wall and outflow parts of that boundary. Then, at inflow a prescribed
value of the velocity is imposed:

u=uI on �I (11)

where uI is a given inflow velocity. At solid walls, the impermeability condition is specified, i.e.
the velocity normal to the wall is zero, but the fluid may slip tangent to the wall with no tangent
stress:

nxu+nyv=0 on �W (12)

At outflow, zero stress is imposed:

�Hnx
�u
�x

+�Hny
�u
�y

=0 on �O (13)
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An initial condition must also be specified for the velocity field:

u(x, y, z,0)=u0(x, y, z) ∀(x, y, z)∈� (14)

where u0 is a given 3D, divergence-free initial velocity.
The hydrodynamical model that we consider consists of Equations (3), (5) and (6), boundary

conditions (7)–(13) and the initial condition (14). In order to write down the weak form of this
problem, which will be needed when we introduce its finite element approximation, and for
simplicity of exposition, we will assume in what follows that �l =�I and uI =0, i.e. that the
lateral boundary is a closed container where only homogeneous Dirichlet boundary conditions are
specified. Then, the velocity u, the non-hydrostatic pressure p and the free-surface elevation �
belong, respectively, to the following spaces:

V :=
{
ũ=(ũ, ṽ, w̃)∈H1(�)/ũ=0 on �I, w̃+ ũ

�H
�x

+ ṽ
�H
�y

=0 on �b

}

Q := L2(�)

M :=H1(S)

The weak form of the momentum equation (5) is obtained by multiplying it by a test function
ũ=(ũ, ṽ, w̃)∈V , integrating on � and making use of Green’s formula and the boundary conditions
(8), (9) and (10), which yields

∫
�

�u
�t

ũd�+
∫

�
(u·∇)uũd�+

∫
�
(k×u)ũd�+

∫
�

∇ pũd�

+
∫

�

(
�H

�u
�x

�ũ
�x

+�H
�u
�y

�ũ
�y

+�V
�u
�z

�ũ
�z

)
d�

=−g
∫

�
∇2�ũd�+

∫
�s

(�xs ũ+�ys ṽ)d�

+
∫

�b

(�xb ũ+�yb ṽ)d�+
∫

�b

n� ·∇ww̃d�

where (�xb,�
y
b) are given by (8) and (�xs ,�

y
s ) by (9) and we have used the notation n� =

(�Hnx ,�Hny,�Vnz).
The continuity equation (6) is also enforced weakly. In this case, a scalar test function q∈Q is

considered, so that multiplying (6) by q and integrating on � leads to∫
�
(∇ ·u)q d�=0

Finally, the weak form of the free-surface equation (3) is written, for an arbitrary �∈M , as∫
S

��

�t
�d�+

∫
S
u

��

�x
�d�+

∫
S
v

��

�y
�d�=

∫
S
w�d�
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3. NUMERICAL APPROXIMATION

We describe in this section the numerical scheme that we employ for the approximation of the
hydrodynamical problem (3)–(5)–(6). We first introduce the time-stepping scheme in a semidiscrete
(continuous in space) context and we then consider a spatial discretization by the finite element
method.

3.1. Time stepping

It is a common practice in non-hydrostatic ocean models to use a fractional-step method as time
integration scheme (see, e.g. [15, 16, 18]). In this kind of a method, each time step is decomposed
into a number of substeps, generally two (see, for instance, [41, 42] and the references therein).
The hydrostatic pressure is split from the non-hydrostatic contribution as in Equation (4); the
latter is then neglected in the first fractional step and an intermediate, non-divergence-free velocity
field is thus computed. The non-hydrostatic pressure correction is then obtained by projecting the
intermediate velocity field onto the subspace of solenoidal vector fields. Although this splitting
allows to segregate the calculation of the non-hydrostatic pressure correction from that of the
velocity, thus reducing the computational cost, a splitting error is introduced. Moreover, fractional-
step methods are known to require stable velocity-pressure approximations in order to yield
convergent solutions (see [42]), just as mixed methods do.

As an alternative approach, we employ an implicit backward Euler monolithic method for the
time integration of (5)–(6), in which the velocity and the pressure are computed simultaneously
(a monolithic time-stepping method was also employed in [23]). The free-surface elevation,
however, is treated explicitly in the momentum equation (5), otherwise the dimension of the discrete
equation system would increase significantly. The free-surface elevation is updated at the end of
the step using the newly calculated velocity field, integrating (3) implicitly once again by the
backward Euler method. A similar approach was used in [21] for the treatment of the free-surface
elevation. The rest of the terms in the momentum equation (5) are treated implicitly but for the
convective (nonlinear) term, which is linearized using the value of the velocity at the previous
time-step as convective velocity; this is a simple approximation of first order in the time-step size,
which is consistent with the overall accuracy of the method.

Thus, given a time-step size �t>0 and assuming that approximations un of the velocity and �n

of the free-surface elevation at time tn =n�t are known, a new velocity un+1 and pressure pn+1

at tn+1 are obtained from:

1

�t
(un+1−un)+(un ·∇)un+1+k×un+1+∇ pn+1− �

�x

(
�H

�un+1

�x

)

− �
�y

(
�H

�un+1

�y

)
− �

�z

(
�V

�un+1

�z

)
=−g∇2�

n in � (15)

∇ ·un+1=0 in � (16)

Then, a new approximation �n+1 of the free-surface elevation at time tn+1 is obtained from:

1

�t
(�n+1−�n)+un+1

(
��

�x

)n+1

+vn+1
(

��

�y

)n+1

=wn+1 in S (17)
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The weak form of the semidiscrete problem (15)–(16)–(17) consists in finding un+1=
(un+1,vn+1,wn+1)∈V , pn+1∈Q and �n+1∈M such that, for all test functions ũ=(ũ, ṽ, w̃)∈V ,
q∈Q and �∈M :∫

�

1

�t
(un+1−un)ũd�+

∫
�
(un ·∇)un+1ũd�+

∫
�
(k×un+1)ũd�+

∫
�

∇ pn+1ũd�

+
∫

�

(
�H

�un+1

�x
�ũ
�x

+�H
�un+1

�y
�ũ
�y

+�V
�un+1

�z
�ũ
�z

)
d�

=−g
∫

�
∇2�

nũd�+
∫

�s

(�xs ũ+�ys ṽ)d�

+
∫

�b

(�xb(u
n+1)ũ+�yb(v

n+1)ṽ)d�+
∫

�b

n� ·∇wn+1w̃d�

∫
�
(∇ ·un+1)q d�=0

∫
S

1

�t
(�n+1−�n)�d�+

∫
S
un+1

(
��

�x

)n+1

�d�+
∫
S
vn+1

(
��

�y

)n+1

�d�=
∫
S
wn+1�d�

3.2. Finite element spatial approximation

3.2.1. Finite element approximation. The semidiscrete problem (15)–(16)–(17) is further
discretized in space by the finite element method. We consider an unstructured 2D mesh �h of
triangular elements to discretize the surface S. Beneath each triangle, an arbitrary number
of prismatic elements is further considered with vertical lateral faces; the top and bottom faces
of each prism need not be horizontal and the number of elements in each column need not be
constant. We call the resulting 3D mesh �h . This meshing strategy provides full flexibility to
approximate both the coastline and the bottom topography. Moreover, each element K ∈�h is the
image of the reference prism K̂ := T̂ ×[−1,1], where T̂ is the simplex of vertices (0,0), (1,0)
and (0,1) in R2, by a mapping FK that is a tensor product of a polynomial of the first degree in
(x̂, ŷ) and a polynomial of the first degree in ẑ:

FK : K̂ →K with FK ∈ R1 := P1((x̂, ŷ))⊗P1(ẑ)

The unknowns of the problem are approximated by finite element functions, which are continuous
across interelement boundaries and polynomials within each element when expressed in reference
variables (x̂, ŷ, ẑ). We will focus our attention on the case of equal interpolation for the velocity
and the pressure, in which both variables are approximated on the same 3D mesh; the free-surface
elevation is approximated by linear polynomials on the 2D mesh �h . The finite element spaces
for the approximation of the velocity, the pressure and the free-surface elevation are, respectively,

Vh :={ũh ∈V/∀K ∈�h, ũh |K = ûK ◦F−1
K , ûK ∈(R1)

3}
Qh :={qh ∈C0(�)/∀K ∈�h,qh |K = q̂K ◦F−1

K , q̂K ∈ R1}
Mh :={�h ∈C0(S)/∀T ∈�h,�h |T = �̂T ◦F−1

T , �̂T ∈ S1}
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where FT : T̂ →T denotes the linear transformation of T̂ into T . In these expressions, we have
also used the notation:

S1 := P1(x̂, ŷ)

The standard Galerkin approximation of (15)–(16)–(17) consists in finding finite element functions
un+1
h =(un+1

h ,vn+1
h ,wn+1

h )∈Vh , pn+1
h ∈Qh and �n+1

h ∈Mh such that, for all test functions ũh =
(ũh, ṽh, w̃h)∈Vh , qh ∈Qh and �h ∈Mh :∫

�

1

�t
(un+1

h −unh)ũh d�+
∫

�
(unh ·∇)un+1

h ũh d�+
∫

�
(k×un+1

h )ũh d�

+
∫

�
∇ pn+1

h ũh d�+
∫

�

(
�H

�un+1
h

�x
�ũh
�x

+�H
�un+1

h

�y
�ũh
�y

+�V
�un+1

h

�z
�ũh
�z

)
d�

=−g
∫

�
∇2�

n
h ũh d�+

∫
�s

(�xs ũh+�ys ṽh)d�

+
∫

�b

(�xb(u
n+1
h )ũh+�yb(v

n+1
h )ṽh)d�+

∫
�b

n� ·∇wn+1
h w̃h d� (18)

∫
�
(∇ ·un+1

h )q̃h d�=0 (19)

∫
S

1

�t
(�n+1

h −�nh)�h d�+
∫
S
un+1
h

(
��h
�x

)n+1

�h d�+
∫
S
vn+1
h

(
��h
�y

)n+1

�h d�

=
∫
S
wn+1
h �h d� (20)

The treatment of the hydrostatic term on the right-hand side of the momentum equation (18)
deserves some attention. It involves volume integrals of products of 2D (surface) shape functions
(or rather, of their derivatives) and 3D (volume) weighting functions. The calculation of these
integrals, which is performed elementwise as is usual in finite element methods, is feasible since
we require that the nodes be arranged in columns.

3.2.2. Pressure stabilization. The incompressibility constraint (19) on the velocity field poses a
severe problem in the treatment of the pressure. It is well known that if standard approximations
are employed in incompressible flow problems, the approximating spaces for the velocity and the
pressure have to satisfy a compatibility condition, known as LBB or inf–sup condition, in order to
yield a stable and convergent method (see [43]). It needs to be said that equal order interpolations
do not satisfy this compatibility condition. Several combinations of finite element spaces for the
velocity and for the pressure have been developed which do satisfy it, but stabilized formulations
(see [27–30], for instance), which do not require a compatibility condition have proved to be more
efficient than stable mixed pairs. In this alternative approach, some terms are added to the discrete
problem, which enhance its stability.

A stabilized, finite element formulation for incompressible flow problems was also developed
and analyzed in [33, 34] (see also [32, 35]). The main idea of this method consists in introducing
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a new unknown of the problem that is the orthogonal projection of the gradient of the discrete
pressure onto the space of finite element functions. The continuity equation is then modified in a
consistent manner by the addition of a suitable multiple of the divergence of the difference between
the pressure gradient and its projection. This PGP method was proved in [34] to yield stable and
optimally convergent approximate solutions of the steady, incompressible Navier–Stokes equations
under a weak condition on the approximating finite element spaces; it was shown in [33] that this
condition is satisfied by equal-order interpolations. A similar technique employed together with
a backward Euler temporal approximation was shown in [32] to be stable and convergent for the
solution of the transient problem.

The stabilized discrete problem that we consider here consists in finding un+1
h =(un+1

h ,vn+1
h ,

wn+1
h )∈Vh , p

n+1
h ∈Qh , �n+1

h ∈Mh and rn+1
h =(rn+1

1 ,rn+1
2 ,rn+1

3 )∈ Rh , where

Rh ={sh ∈(C0(�))3/∀K ∈�h,sh |K = ŝK ◦F−1
K , ŝK ∈(R1)

3}
such that, for all test functions ũh =(ũh, ṽh, w̃h)∈Vh , qh ∈Qh , �h ∈Mh and sh ∈ Rh :∫

�

1

�t
(un+1

h −unh)ũh d�+
∫

�
(unh ·∇)un+1

h ũh d�+
∫

�
(k×un+1

h )ũh d�+
∫

�
∇ pn+1

h ũh d�

+
∫

�

(
�H

�un+1
h

�x
�ũh
�x

+�H
�un+1

h

�y
�ũh
�y

+�V
�un+1

h

�z
�ũh
�z

)
d�

=−g
∫

�
∇2�

n
h ũh d�+

∫
�s

(�xs ũh+�ys ṽh)d�

+
∫

�b

(�xb(u
n+1
h )ũh+�yb(v

n+1
h )ṽh)d�+

∫
�b

n� ·∇wn+1
h w̃h d�

∫
�
(∇ ·un+1

h )q̃h d�+ ∑
K∈�h

∫
K

	K∇ pn+1
h ∇qh d�− ∑

K∈�h

∫
K

√
	K rn+1∇qh d�=0

∫
�
rn+1
h sh d�− ∑

K∈�h

∫
K

√
	K∇ pn+1

h sh d�=0

∫
S

1

�t
(�n+1

h −�nh)�h d�+
∫
S
un+1
h

(
��h
�x

)n+1

�h d�+
∫
S
vn+1
h

(
��h
�y

)n+1

�d�=
∫
S
wn+1
h �h d�

Here, the stability coefficients 	K are computed in terms of the size of elements K , hK , and a
characteristic value of the velocity in elements K , VK , according to the following expression which
is usually employed in stabilized formulations:

	K =
(
c1

�

h2K
+c2

VK

hK
+ 1

�t

)−1

∀K ∈�h

where c1 and c2 are given constants.
The meaning of the new variable rn+1

h can be understood as follows: for continuous finite
element interpolations of the pressure pn+1

h , the pressure gradient is a function in (L2(�))3;rn+1
h is
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then the orthogonal projection of the pressure gradient ∇ pn+1
h (scaled within each element K by√

	K ) onto the finite dimensional subspace Rh of (L2(�))3.

4. NUMERICAL RESULTS

We present in this section some numerical results obtained with the model just described. We first
consider two test cases: the problem of wind set-up and the problem of sloshing motion. Then we
solve a real-life application problem consisting of the wind-driven circulation in the Bay of Biscay
(North of Spain). Other flow problems such as the hydrodynamics in the harbor of Barcelona have
been solved satisfactorily with the rigid version of this model (see [44]).

4.1. Wind setup

The term wind setup usually refers to the excess sea levels in the coast generated by a severe wind
storm. Physically, the atmosphere acts on the sea in two different ways: changes in atmospheric
pressure induce changes in the forces acting vertically on the sea surface, which are felt immediately
at all depths; also, forces due to wind stress are generated at and parallel to the sea surface, which
controls the downward transfer of momentum. Usually, the effects of winds and pressures cannot
be identified separately.

In the simpler setting of a wind of velocity V blowing along a narrow channel of constant depth
H , the steady-state effect of the wind stress on the slope of the free surface d�/dx can be shown
to be (see [45]):

d�

dx
= Cs�aV

2

g�H

so that for a channel of length L the setup (height difference between the two ends of the channel
due to wind stress) will be (Cs�aV

2L)/(g�H). These expressions highlight the fact that the effect
of winds on sea levels increases inversely proportional to the water depth and will be most relevant
when the wind blows over extensive regions of coastal shallow water.

We solved this problem on a channel of length L=1m, width W =0.2m and depth H =0.2m
using a mesh of prismatic elements generated from a surface triangular mesh made up from 40
uniform subdivisions in the x direction (in which the wind is assumed to blow) and 4 subdivisions in
the (transversal) y direction; the resulting 160 rectangles are then split into 4 triangles each through
their diagonals. In the vertical z direction, 20 non-uniform layers of elements were considered,
which are refined near the surface and at the bottom. Thus, the mesh consists of 12 800 prismatic
elements and 7665 nodal points. The following values for the physical data were taken for this
problem: Cs =1, �a =1kg/m3, �=1kg/m3 and g=1m/s2, with a wind velocity of V =1m/s;
for these academical values, the theoretical setup is 5m. Uniform values of 1m2/s were set for
both viscosity coefficients, and Coriolis forces and bottom friction were neglected.

Starting from the fluid at rest with a horizontal initial free surface, a steady-state solution was
reached in 313 time steps of size as large as �t=10s; a steady-state tolerance of 10−4 was allowed
in the maximum of the Euclidean norms of the nodal vectors of velocity, pressure and pressure
gradient. Figure 1 shows the profile of the free-surface height along the channel centerline y=0.1m
at the steady state. An almost linear behavior can be observed, in accordance with theoretical
predictions. The strange behavior of the numerical free-surface solution at the left end can be due
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Figure 1. Steady-state profile of the free-surface height along y=0.1 in the problem of wind setup and
linear regression line of the nodal values.

Figure 2. Steady-state velocities along y=0.1 in the problem of wind setup.

to the fact that no absorbing condition has been employed at that boundary for the free-surface
elevation, which may introduce some reflection. We extrapolated the free-surface height at the end
of the channel by a linear regression analysis from the nodal results obtained and found a numerical
value for the setup of 5.0575m, with only 1.15% relative error with respect to the predicted value.

In Figure 2, the steady-state velocities along the section y=0.1m are displayed; a maximum
velocity of 0.07m/s was obtained. In this problem, the use of a non-hydrostatic pressure formulation
is needed to obtain a smooth change in the velocity direction near the wall and thus prevent the
appearance of oscillations in the velocity field (see [16]); a smooth change in the velocity direction
and the absence of oscillations can be clearly observed in Figure 2.

4.2. Water sloshing in a confined container

Water oscillations are one of the natural hazards that can affect harbors, lakes, bays and estuaries.
When surface waves are trapped in closed containers, the water level is alternatively high and
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low at each end of the container with a minimum horizontal flow at those points (the antinodes),
whereas at the center (the node) the water level remains constant but the horizontal movement of
water is the greatest. Thus, big oscillations in a harbor may dash vessels against the harbor wall or
even throw them ashore; at the lowest level at each end, there is also the danger of vessels being
grounded, thus suffering damage to their hulls.

Among the different harbor oscillation scenarios, the problem of water sloshing is probably the
hardest to solve because of the infinitely many modes that are excited. We simulated a container
of length L=1m in the x direction and width W =0.2m in the (transversal) y direction. The
still water depth was H =0.2m and the free surface had an initial slope of S=0.001 in the x
direction; the fluid was initially at rest. Once the fluid begins to move under gravity, there exist
an infinite number of standing wave modes in the container. The linear wave theory ensures that
the free-surface height can be expressed as

�(x, t)=
∞∑

m=1
Am sin(kmx)cos(�mt) (21)

where

km = (2m+1)


L
, �m =√gkm tanh(kmH) and Am = (−1)mSL

(2m+1)2
2

are the wave number, frequency and amplitude of the mth mode, respectively. A uniform mesh of
triangular prismatic elements was used, with 50×4×10 subdivisions in the x , y and z directions,
respectively; each surface rectangle was split this time into two triangles through one of its
diagonals. Thus, there were 5555 nodal points and 8000 finite elements in the mesh. Zero normal
flow was imposed on the lateral boundaries and at the bottom. Gravity was set to g=9.81m2/s,
the fluid density was �=1000kg/m3 and Coriolis force, wind stress, bottom friction and diffusion
were neglected. A time step increment of �t=10−4 s was used in order to predict accurately the
time evolution of the free surface, and the computation was carried on for two time periods T of
the fundamental mode.

Figure 3 shows a comparison of the numerical free-surface profile along y=0.1 and the theo-
retical solution (21) (which is plotted using the first 20 modes) at different times. A very close
agreement can be clearly observed at all times, showing that the model proposed is able to repro-
duce accurately the complex evolution of surface gravity waves. In Figure 4 a 3D view of the
free-surface elevation at t=0.9T is shown, where the vertical scale has been magnified 200 times
for better visualization; it can be seen that the effect of higher frequency modes is well reproduced
numerically.

As the motion of the free surface is not taken into account in the computational domain, one
may think that in the proposed scheme the total mass of fluid need not be conserved. In order
to check numerically the mass conservation properties of the proposed finite element model, we
computed the total mass of fluid obtained in each time step in this problem, the time evolution of
which is plotted in Figure 5; as can be observed, the total mass is clearly conserved.

4.3. The Bay of Biscay

Submarine canyons serve as major conduits for nutrient and sediment transport from the land and
the continental shelf to the deep sea. The water currents in submarine canyons are generated by
many forces, and their presence provides an exchange of shallow shelf water with the deeper water
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Figure 3. Comparison of the theoretical solution (solid line) and the numerical results (crosses) at different
times for the problem of water sloshing.

offshore. In submarine canyons, theoretical models suggest that water circulation is characterized
by both downwelling and upwelling events [46] whereas both hydrographic and satellite data
indicate the role of these events in the modification of the surface flow [47].

In this third example, the model HELIKE has been used to simulate the current forcing by wind
over the Cape Breton Canyon (Figure 6), which is located in the Bay of Biscay in the intersection
of the Spanish and French shelves and acts as a front between the French shelf/slope and the
Spanish shelf/slope waters. The main feature of the surface water circulation within the area is
the presence of the slope circulation named the Iberian Poleward Current (IPC). Its direction and
location depends upon the prevailing wind regime.

The computational mesh of the study area was generated using the GiD software. The surface
representation of the domain is discretized using the advancing front method that is widely used to
generate triangular and tetrahedral meshes. To construct the 3D mesh, each node of the previously
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Figure 4. Three-dimensional view of the free-surface elevation at
t=0.9T for the problem of water sloshing.
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Figure 5. Time evolution of the total mass of fluid for the problem of water sloshing.

generated 2Dmesh is projected vertically until it reaches the bottom as shown in Figure 7. All lateral
faces of the resulting triangular prisms must be vertical to comply with the numerical requirements
of barotropic and baroclinic problems. The superior and inferior bases of the generated triangular
prisms are not necessarily horizontal. The final 3D computational grid used has 27 162 nodes,
39 680 elements and five vertical layers.

Since the focus of this numerical test is on the wind-induced circulation, the density field plays
no role and has been considered homogeneous with a value of 1025.34kg/m3. A wind stress
forcing was imposed over the surface boundary, utilizing a wind stress field associated to a SW
wind event with a mean wind velocity of 10m/s.

Two wind-driven experiments were performed. In the first case, a rigid-lid surface boundary
condition was applied and in the second case, the free-surface equation was included and the
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Figure 6. Bay of Biscay: localization and model domain.

Figure 7. Computational mesh with 27 162 nodes and 39 680 triangular prismatic elements in five layers.
The depth is magnified five times for visualization purposes.

barotropic model was used. For both case studies, homogeneous Neumann conditions have been
imposed for the flow on the northern and the western boundaries and a no-slip condition has been
adopted for the bottom and the coastal contour.

Moreover, simulations were executed until a steady state was reached, with a relative error of
10−3. In the first case, 658 time-steps were employed with a time-step size of 1 s, while in the
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Figure 8. Comparison of the surface velocity field with the rigid-lid (top) and
the free-surface (bottom) models.

second case 766 time steps were performed with a time step size of 0.1 s. A Smagorinsky model
was used for the horizontal turbulent viscosity coefficient, and a constant value of 10−1m2/s for
the vertical one.

The wind-induced surface velocity field obtained in both cases is shown in Figures 8 and 9 in the
form of velocity vectors and their magnitude, respectively. It depends mainly on two factors: the
wind direction, which plays an important role in the shallow water areas, and the non-hydrostatic
pressure effects due to the canyon slope (see Figure 10), which are observed to be more important
in deeper water depths. However, a coastal jet develops only in the free-surface case.

At a depth of 1000m, the presence of the canyon has more influence on the water circulation (see
Figures 11 and 12), but it is only in the free-surface case that the velocity field flows upwards to
the upper regions of the submarine canyon, feeding the upwelling. In the lower part of the canyon,
some downwelling flow occurs but it is weaker compared with the magnitude of the upwelling
flow in the upper part. These results are in agreement with the previous studies and observations
conducted by Boyer et al. see [48].

5. CONCLUSIONS

The model HELIKE has been developed for the numerical simulation of 3D non-hydrostatic coastal
flows with a free surface. This model uses 3D prismatic finite elements with nodes arranged
vertically and a pressure stabilization technique, which allows one to employ equal interpolation
for the 3D velocities and the pressure. The use of unstructured triangular meshes on the free
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Figure 9. Comparison of the module of the surface velocity field with the rigid-lid
(top) and the free-surface (bottom) models.

Figure 10. Distribution of the non-hydrostatic pressure field over the Cape Breton
Canyon bathymetry in the free-surface case.

surface provides full flexibility to approximate the complex geometry of coastlines, river banks and
isobaths. The model also incorporates Coriolis effects, bottom friction, wind stress and different
turbulence closure models, and it is applicable to irregular bottom topographies. This model can thus
be described as a complete, fully 3D, stabilized finite element, unstructured mesh, non-hydrostatic,
free-surface coastal model.

The model HELIKE has proved to reproduce accurately the evolution of surface gravity waves,
barotropic effects and wind-driven flows, which frequently occur in coastal ocean flow problems.
Some improvements can be envisaged in order to broaden the range of the applicability of the
model, such as the incorporation of baroclinic terms. Other practical applications of the model
have already been initiated.
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Figure 11. Comparison of the vertical velocity component with the rigid-lid (top) and the free-surface
(bottom) models at 1000m depth.

Figure 12. Comparison of the non-hydrostatic pressure with the rigid-lid (top) and
the free-surface (bottom) models at 1000m depth.
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13. Guillén-González F, Rodrı́guez-Gómez D. Bubble finite elements for the primitive equations of the ocean.
Numerische Mathematik 2005; 101:689–728.

14. Iskandarani M, Haidvogel DB, Levin JC. A three-dimensional spectral element model for the solution of the
hydrostatic primitive equations. Journal of Computational Physics 2003; 186:397–425.

15. Casulli V, Zanolli P. Semi-implicit numerical modelling of nonhydrostatic free-surface flows for environmental
problems. Mathematical and Computer Modelling 2002; 36:1131–1149.
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